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Fast Q-tensor method for modeling the dynamics of defects in a liquid crystal director field
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A fast Q-tensor method, which can model the defect dynamics in a liquid crystal director field, is presented.
Conceptually based on the Oseen-Frank approach, we have added temperature energy density terms in addition
to the strain energy terms, and an improved normalization method for fast calculations. The method is more
compact and allows a larger time step than previous methods. The method is used to model the defect
dynamics occurring during the topological state change from a splay to bend director field configuration.
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I. INTRODUCTION

Liquid crystals~LCs! have been used widely for applica
tions including display devices and optical components
communication. In particular, recent display devices ha
been required to have better electro-optical characteris
such as the wide viewing angle and video rate imag
Therefore, an understanding of the dynamic behavior of
LC director field has become important for the advanced
device modes such as thep cell @1#, the multidomain cell,
and the PVA~patterned vertically aligned! cell @2#, which can
improve the electro-optical characteristics compared w
conventional defect-free twisted-nematic~TN! cell. Different
from the conventional TN cell, however, these types of
modes may exhibit disclinations. In general, defects occu
allow for the transition between topologically inequivale
director configurations. One-dimensional calculations can
give us appropriate results for modeling of the LC config
rations containing defects. So, two- and three-dimensio
calculations for liquid crystal cells are important for unde
standing the dynamics of an LC director field with defect

In order to achieve the LC configurations in the equil
rium state, we need to calculate the minimum free ene
For the calculation of the free energy, we use the Gibb’s f
energy of the LC cell that is composed of elastic consta
and electric field terms.

The elastic energy can be expressed with Oseen-F
vector representation that uses three elastic constants~splay,
twist, and bend! and the Landau–de GennesQ-repre-
sentation method@3#. The Oseen-Frank vector representati
method is the more common method, but it cannot han
defects that may happen in the LC cell because it assu
that the order parameterS is a constant. As a result, it als
cannot handle transitions between topologically differ
states~for example, splay to bend transition in thep cell!.
The other method, the Landau–de GennesQ-tensor repre-
sentation, can handle defects and topological transition
addition to the normal dynamic behavior of LC cells by co
bining the thermal and strain free energy. It implies that
can achieve the information of the order parameterS in ad-
dition to LC director componentsnx , ny , and nz . In the
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Q-tensor method, two elastic constants are yielded if we
the second-orderQ-tensor expansion. However, it has be
proved that degeneracy between splay and bend elastic
stants can be removed if we use the third-order expan
@4#. Berreman has shown the relation between the Ose
Frank elastic terms and the second- and third-order term
the Q tensor@5#. In spite of these merits, the usualQ-tensor
method is a complicated numerical process and require
very small time step to prevent the divergence of the cal
lated results.

In a previous report@6#, the defects in ap cell were mod-
eled by using the Dickman’sQ-tensor method. Dickman ha
shown that the Oseen-Frank vector representation could
directly to theQ-tensor representation if we use only on
third-orderQ component@7#. However, Dickman considere
only a constant value of the order parameterS, so that the
results are only qualitative in their description of defec
Previously, we have shown the fastQ-tensor method, which
can calculate the order parameter, by adding the tempera
terms in addition to theQ-tensor representation of the Osee
Frank free energy terms@8#. And we have derived an im
proved normalization method for the faster calculations.

In this paper, we model dynamical behaviors of the L
director field with defects in a patterned-electrodep cell. The
p cell is a fast response LC device that exhibits a wide vie
ing angle, so that it has a good potential for TV applicatio
However, issues with thep cell include a transition from a
splay state at lower voltage to a bend state at higher volt
that involves the nucleation and motion of defects. In ord
to model the patternedp cell, we first review the derivation
of the Q-tensor method, then by using the fastQ-tensor
method, we calculate the order parameterS as well as the
director componentsnx , ny , and nz . We compare the LC
director configurations from the fastQ-tensor method with
experimental photographs.

II. NUMERICAL MODELING OF THE FAST
Q-TENSOR METHOD

As we mentioned above, the Gibb’s free energy dens
( f G) consists of elastic energy density term of the LC dire
tor ( f s) and external electric free energy density term (f e).
Simply, we can achieve the total energy by integrating
calculated Gibb’s free energy density. Berreman has sho
©2003 The American Physical Society15-1
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that the Landau–de GennesQ representation for the strai
energy density could be expressed as follows@5#:

f s5(
j 51

4

Cj
~2!Gj

~2!1F (
j 51

4

Cj
~3!Gj

~3!1G7
~3!G7

~3!G1¯ ,

~1!

where the constantsCj
(n) are related to elastic constants a

Gj
(n) can be defined with the values ofQ tensor.
In another way, we can express elastic energy densit

the LC director in the vector form. The vector form of th
Frank-Oseen strain free energy density can be expresse
below:

f s5
1
2 K11~¹•n!21 1

2 K22~n•¹3n!21 1
2 K33~n3¹3n!2

2 1
2 ~K221K24!¹•@n~¹•n!1n3~¹3n!#

2q0K22~n•¹3n!, ~2!

whereK11, K22, andK33 represent the splay, twist, and ben
elastic constants, respectively.K24 is related to surface an
choring energy and, in the case of strong anchoring ene
state,K24 is not needed.q0 is the chirality of the LC.

Dickman derived theQ-tensor form of the Frank-Osee
strain free energy density:

f s5
1

12
~K332K1113K22!

G1
~2!

S2 1
1

2
~K112K22

23K24!
G2

~2!

S2 1
1

2
K24

G3
~2!

S2 1
1

6
~K332K11!

G6
~3!

S3

1q0K22

G4
~2!

S2 , ~3!

G1
~2!5Qjk,lQjk,l , G2

~2!5Qjk,kQjl ,l ,

G3
~2!5Qjk,lQjl ,k , G4

~2!5ejklQjmQjm,l ,

G6
~3!5QjkQlm, jQlm,k ,

where

Qjk5SS njnk2
d jk

3 D , Qjk,l5
]Qjk

] l
.

The Levi-Cività symbolei jk is 1 when subscripts are in th
order ofxyz, yzx, or zxy, and is21 if the subscript order is
xzy, yxz, or zyx, 0 otherwise. Thed jk is the Kronecker delta
which is 1 if j equalsk, and 0 otherwise.

The electric free energy density for theQ-tensor form is
derived directly fromf e5D•E/2:

f e5
1

2
«0S «̄V, j

21D«V, jV,k

Qjk

S D ,

«̄5
2«'1« i

3
, D«5«'2« i , V, j5

]V

] j
. ~4!
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By using Eqs.~3! and ~4!, we can calculate the LC directo
field from theQ tensor. In spite of this merit, this metho
cannot model the dynamic LC configuration including d
fects because it assumes a constant order parameterS that is
equal to the value ofS at the temperature where the elas
constants were measured.

In order to calculate order parameterSat each grid point,
we need to add a temperature energy term that, in the
sence of director field distortion, determinesS as a function
of temperature because the order parameterS is related di-
rectly to temperature. Basically, we can formulate the th
mal energy density by using a simple polynomial expans
in terms of theQ tensor that is expressed as follows@3#:

f i~T!5 f 01 1
2 A~T!Qi j Qji 1

1
3 B~T!Qi j QjkQkl1

1
4 C~T!

3~Qi j Qi j !
21O~Q5!. ~5!

The restriction to a uniaxial order parameter tensor may
considered inappropriate in regions where the order par
eter is spatially varying. However, it is experimentally o
served that the size of the region where the order param
is spatially varying is typically of the order of molecula
dimensions. The total free energy density is the sum of E
~3!–~5!, so that Gibb’s free energy density (f G) can be de-
scribed as the sum of these three energy densities.

In order to achieve the equilibrium state of the direc
configuration, it is typical to use the Euler-Lagrange equ
tion. The following is the Euler-Lagrange equation for th
electric potential and the director components under the C
tesian coordinate system. By solving Eq.~6!, potential distri-
bution and LC configurations are obtained, respectively,

052@ f G#Qjk
,

~6!

052@ f G#V5¹•D,

where

@ f G#Qjk
5

] f G

]Qjk
2

d

dx S ] f G

]Qjk,x
D2

d

dx S ] f G

]Qjk,y
D2

d

dx S ] f G

]Qjk,z
D ,

@ f G#V5
] f G

]V
2

d

dx S ] f G

]V,x
D2

d

dx S ] f G

]V,y
D2

d

dx S ] f G

]V,z
D .

The terms@ f G#Qjk
and@ f G#V represent the functional de

rivatives with respect to theQjk and voltageV, respectively.
By using these equations, we can calculate the compon
of the 333 matrix Q and voltages in each grid. For th
calculation, therefore, we need to formulate functional d
rivative equations that are described as follows:

@ f G#Qjk
5@ f G#S1@ f G#V1@ f G#T , ~7!

where@ f G#S , @ f G#V , and @ f G#T are the strain, voltage, an
temperature terms, respectively,
5-2
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@ f G#S52
2

S2 S 2
1

12
K111

1

4
K221

1

12
K33DQjk,l l 1

~K112K22!

S2 Qjl ,lk2
K24

S2 Qjl ,lk1
1

4S3 ~K332K11!~Qlm, jQlm,k2Qlm,lQjk,m

2QlmQjk,ml2Qlm,mQjk,l2QlmQjk,lm!1
2

S2 q0K22ejlmQmk,l ,

@ f G#V52 1
2 e0DeV, jV,k ,

@ f G#T5S A11A2

T

Tni
DQ•Q1A3Q•Q•Q1A4Q•Q•Q•Q,

Qjk,l l 5
]

] l S ]Qjk

] l D .
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In this equation we see an explicit dependence onS and
also we know that there is an implicit dependence onS in
both theK’s and theQ’s. At this point we will assume tha
the coifficents of the derivatives ofQ are temperature inde
pendent. For example, in the first term we will assume t
theK’s are proportional toS2, and therefore we set the valu
of the explicitly shownS to the value at which we assum
the elastic constants were measured,~0.6!. A more accurate
approach accounting for the temperature dependence o
K’s ~and the extent of the validity of this approximation! is
given by Berreman@5#.

In this equation,T is the temperature,Tni represents the
nematic-isotropic transition temperature, and the const
from A1 to A4 represent the coefficients for the curve fittin
polynomial. Generally, polynomial coefficients may be d
pendent on nematic material properties. In order to achi
the value of the coefficients, we can try to fitS as a func-
tion of temperatureT to experimental data. Here, the coef
cients are adjusted so thatTni is at 95 °C, and soS as to be
0.6 at room temperature. As a result, the values ofA1 ,
A2 , A3 , andA4 asA1

050.79 J/C m3, A2
050.784 J/C m3, A3

0

50.61 J/C m3, andA4
051.474 J/C m3, respectively, were de

termined.
For the equilibrium state, theQ tensor and voltages a

each grid point should be recalculated in every time s
until they exhibit stable response. We can achieve this
using the dynamic equationg(]Qjk /]t)52@ f G#Q jk , where
g is rotational viscosity. To obtain an equilibrium state, w
applied relaxation method based on dynamic equation
numerical calculation. As a result, the formulated relat
betweenQ tensor of next timeQjk

2t11 and that of current
time Qjk

2t is as follows:

Qjk
2t115Qjk

2t1
Dt

g
@ f G#Qjk

. ~8!

Using this equation, theQ-tensor components can be u
dated at each time step, so that the final static value of thQ
tensor is the equilibrium state. The order parameterS is re-
lated toQ tensor in the equation byS251.5(Q•Q) and we
can get this simultaneously with theQ components.
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III. NORMALIZATION METHOD FOR TRACELESSNESS

The Landau–de GennesQ tensor has zero traceTr
((Qii 50) and it implies that the LC director is a unit vecto
((ni

251). Therefore, we need to normalize the calcula
newQ tensor at every time step so that it is traceless andn is
a unit vector. Typically, the condition of tracelessness is
rectly imposed when numerically determining the equil
rium value of theQ tensor@5#. Therefore, normalizations fo
each time step can be achieved by the equationQii 5(Qii
2Tr /3). However, we have found serious problems with t
method when an electric field is applied. Figure 1 shows
calculated dynamic property of a TN unit cell at 25 °C usi
a normalization method of tracelessness. If we apply no v
age, we can see that all ofQj j components are saturated

FIG. 1. Calculated dynamic behaviors of diagonal compone
of Q tensor and order parameterS using a normalization method
based on tracelessness of theQ tensor:~a! 0 V, ~b! 5 V.
5-3
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the range from20.2 to 0.4. However, in the case that volta
is applied, the values ofQj j components deviate this rang
It implies that the LC director has no longer unitized leng
and it does not make sense physically.

To see the cause of this condition, consider the case w
the director is at 45° in thex-z plane, and a high voltage i
applied along thez direction. The voltage term in the upda
equations will causeQzz to grow without bound. Only the
normalization condition restrainsQzz because the value o
the trace will become larger than 0 at each time step.
expect that the effect of the voltage should not affect
value of Qyy that should stay fixed at2S/3. @Recall the
definition of theQ tensor:Qii 5S(ni

221/3).] However, with
the above normalization it is clear thatQyy will be pushed to
be more negative than2S/3. This condition is nonphysica
and causes the calculation to become unstable. The only
to avoid very nonphysical situations is to take very sm
update steps.

The physical basis for theQ tensor being traceless is th
fact that the director is a unit vector, and we considered
it might be more appropriate to rely on the renormalizat
of n directly. Writing ni5ni /(unu), where unu5(nx

21ny
2

1nz
2)0.5, in terms ofQii , using the definition ofQii , we can

find an improved normalization condition:Qii 5(Qii
2Tr /3) @S/(Tr1S)#. It can be seen thatQxx1Qyy1Qzz
50 so that the above condition causes theQ tensor to be
traceless. It is also noted that the new normalization con
tion is simply the old one multiplied by the factor:S/(Tr
1S).

Returning to our example, where the director is at 45°
thex-zplane and a high voltage is applied along thez direc-
tion, it can be seen that the new normalization condition w

FIG. 2. Calculated dynamic behaviors of diagonal compone
of theQ tensor and order parameterSusing a normalization method
based on unitization of the LC director:~a! 0 V, ~b! 5 V.
04171
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never pushQyy to the nonphysical condition of being mor
negative than2S/3.

Figure 2 shows the calculated dynamic property using
proved normalization method. Here, stable dynamic prop
ties are shown even with voltage applied.

IV. TEMPERATURE DEPENDENCY OF THE FAST
Q-TENSOR METHOD

Figure 3 shows the calculated relaxation of order para
eter S and the diagonal components ofQ at room tempera-
ture and near the isotropic-nematic transition temperat
For this graph, it was assumed that the cell was rubbed in
plus and minusy direction and was 5mm thick. As men-
tioned above, polynomial coefficientsA1–A4 have been ad-
justed such thatTni are around 95 °C, so that we can s
order parameterSand all diagonalizedQ components go to 0
at Tni from a typical value of the room temperature~25 °C!.
Figure 4 shows more precise temperature characteristic
an order parameterS when we apply a voltage to the cell.
can be seen that by adjusting the coefficientA1 to A4 , which
gives the ratio of the coefficients of the temperature term
the other terms in the free energy equation, the effect o
voltage on the phase transition temperature can be adju
to meet an experimental result.

V. MODELING FOR LC DYNAMICAL BEHAVIORS
OF A PATTERNED p CELL

As mentioned before, thep cell has a good potential fo
device applications because of its properties of fast respo
and wide viewing angle. In general, the director configu

ts FIG. 3. Calculated dynamic behaviors of diagonal compone
of the Q tensor and order parameterS: ~a! at room temperature
~25 °C!, ~b! at Tni .
5-4
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FAST Q-TENSOR METHOD FOR MODELING THE . . . PHYSICAL REVIEW E 67, 041715 ~2003!
tion of the p cell at 0 V is the splay state. As we apply
voltage, the director configuration goes to the bend s
from the splay state. Since the derived optical switching
between the bend states, it is always necessary to app
initial voltage to make the LC configuration transition fro
the splay to the bend state. Defects will necessarily be a
ciated with the transition between the topologically inequiv
lent splay and bend states. In addition, the pattern
electrode cell applies a nonuniform electric field to t
director field, which will affect the nucleation of defect

FIG. 4. The calculated dependence of the order parameterS on
temperatureT. The solid line represents results when no voltage
applied, the dash-dotted line and the dotted line represent the
culated results when we apply the 5 V. For the dotted lines,
values ofA1–A4 have been changed to 0.01 times the values u
for the other two curves (A1

0–A4
0).

FIG. 5. The geometry of thep cell and its microphotographs
~a! a simulated structure,~b! at 2 V, ~c! at 4 V, ~d! at 6 V.
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Therefore, in order to improve the electro-optical charac
istics, it is very important to model director configuration
with defects in the patternedp cell.

For the experimental observation, we prepared a tw
dimensional periodic patternedp cell for the experiment.
Figure 5~a! shows the geometry of thep cell for the calcu-
lation. The LC material used here isZLI-1565 whereK11 is
14.4 pN,K22 is 6.9 pN,K33 is 10.7 pN,« i is 10.7,«' is 3.7,
q0 is 0, and the cell gap is 10mm. Figures 5~b!–5~d! show
photographs of the cell. Here, crossed polarizers are use
the observation. Figure 5~b! shows the photograph whe
lower voltage that is less than the transition voltage is
plied. The LC directors which are inside the electrode be
to tilt toward thez direction, so that we can recognize th
variation of the retardation of the cell. As we apply th
higher voltage, a defectS is observed. Figure 5~c! shows the
generation of the defect in thep cell. If we apply higher
voltage than Fig. 5~c!, we can observe the movement of th
defect to the edge of the electrode. The movement direc
is dependent on rubbing direction. Figure 5~d! shows the
moved defect in the patternedp cell.

In considering to proceed with the calculations, we exp
from experimental observations that the spatial region wh
the order parameter varies from its bulk value will be qu

s
al-
e
d

FIG. 6. The dependency of the order parameterS on the grid
size: ~a! a simulated structure,~b! the order parameterS with
A1–A45A1

0–A4
0, L is 10 mm and 3 V. Each line represents equiS

line in the range of 0.575–0.595.~c! The order parameterS with
which L is 0.1mm and 1.6 V. Each line represents equi-S line in the
range of 0.1–0.6 with 0.1 order parameter step value. There w
50350 grid points in thez-x plane, of which half are shown in~d!.
5-5
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small, possibly of the order of molecular dimensions. T
means that for the real system to be modeled accurately
will need to have grid points in the vicinity of a defe
spaced at approximate molecular dimensions. To be ab
model a pixel that is 10mm wide and in a cell that has
10-mm cell gap would require'13106 grid points if a uni-
form grid spacing is used. If a smaller number of grid poin
is used we expect that deformed regions of the director fi
can ‘‘disappear’’ between grid points@7# before the elastic

FIG. 7. The calculated order parameterS in thep cell: ~a! at 0 V,
~b! at 2 V, ~c! at 4 V, ~d! at 5 V, ~e! at 6 V. A1–A4

50.01(A1
0–A4

0) and the normal grid points were 50350. Each line
represents equi-S line.
04171
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distortion energy has reached the point of causing the o
parameter to decrease from its bulk value. As a result, if
consider a 10-mm pixel size with a reasonable number
grid points, we will be unable to see variations in the val
of the order parameter. Figure 6 demonstrates this point
this case we have considered a device that has a patte
electrode and a pretilt angle of zero. With this geometry
we start with 0 V applied between the top and bottom el
trodes, and increase it, we expect to see the formation
reverse-tilt wall, followed by the formation of a pair of dis
clination lines (m56 1

2 ) as described by Bouligrand@3#. If

FIG. 8. Two-dimensional director calculations for the modeli
of the p cell: ~a! at 2 V, ~b! at 4 V, ~c! at 6 V under the same
condition as Fig. 7. The director orientation is shown for half of t
calculated grid points. The orientation of the cylinders gives
local director orientation, while their length is proportional to th
order parameterS ~the directors all lie in the plane of the figure!.
The solid lines represent equipotential lines. The electric field
rection is normal to the equipotential line. The oval in~a! highlights
the high elastic strain region where the pair of defects could nu
ate for the case of a low anchoring energy. The circles in~b! high-
light the line disclinations after they separated and moved tow
the cell surfaces. The circles in~b! highlight the moved line discli-
nation to each edge of the electrodes.
5-6
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FAST Q-TENSOR METHOD FOR MODELING THE . . . PHYSICAL REVIEW E 67, 041715 ~2003!
we model 50350 grid points, we cannot see a variation
the order parameter like in Fig. 6~b! if a 10-mm cell is con-
sidered, but it is possible if the cell thickness is reduced
0.1 mm @Fig. 6~c!#, as in this case the grid point spacing
reduced to be of the order of the molecular size~the region of
distortion cannot ‘‘slip between grid points’’ and the loc
elastic distortion energy increases to the point of causin
lowering in the order parameter!. Figure 6~c! shows that with
the values ofA1–A4 equal toA1

0–A4
0, the spatial size of the

region of variation in the value of the order parameter
what was expected. However, if we consider the cell thi
ness of our experimental cell, we are not able to cons
grid points spaced as tightly as in Fig. 6~c!. Therefore we
will reduce the values ofA1–A4 to be 0.01, the values foun
for A1

0–A4
0. In this case the defect nucleation and motion

expected to be similar to those which would be observed,
the region of defect size will be much larger~a factor of
'100! than could actually occur.

Figure 7 shows the change of the order parameterS in the
patternedp cell of Fig. 5 as the applied voltage is change
We assumed hard anchoring energy at the surface of the
so that the order parameterS at the surface is always highe
than in the bulk of the cell. Figure 7~b! shows the variation
of the order parameterS at 2 V. On the center of the elec
trode, a wall is formed. In Fig. 7~c!, we can confirm that a
pair of defects is generated on the surface of the electr
The order parameterS of those positions is reduced b
around 0 and it implies that topologically inequivalent pha
transition between splay and bend begins at the center p
in the electrode. In terms of these phenomena, de Ge
predicted the transition of a reverse-tilt wall to a pair
disclination lines. Higher voltage makes the pair of def
move to the edge of the electrode like Figs. 7~d! and 7~e!.
This movement is exactly coincident with the physical ph
nomenon in Fig. 5~c!.

Figure 8 shows the calculated director configuration of
patternedp cell in Fig. 5. In this figure the length of th
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cylinders is proportional to the amplitude ofS, and the ori-
entation of the cylinders gives the director orientation. Fro
the figures, we can understand the generation of the de
pair. If the anchoring energy was very low, the defect p
would be expected to form from the region of high elas
distortion in center of the cell@the outlined area in Fig. 8~a!#.
After nucleation, the movement of the pair of defects towa
opposite surfaces will lower the elastic energy of the c
However if the anchoring energy is high~as in this case!, the
defects appear to nucleate directly on the surfaces. After
defects have formed on the electrodes, it is clear that
movement in opposite directions along their respective s
faces further lowers the elastic energy contained in the c
This process is consistent with the experiments and sh
the dynamical behaviors in thep cell.

VI. CONCLUSIONS

The dynamical behavior of the patternedp cell by using a
fast Q-tensor method has been discussed. It allows us
understand the generation of the defects in the cell as we
normal LC dynamical properties. We showed that a nonu
form potential distribution caused a reverse-tilt wall over
patterned electrode, so that a pair of defects formed
separated. The defects moved to lower energy state of
electrode edge finally. The calculated results explain well
experimental behavior including defects. We expect a furt
increase in accuracy of these results if we consider soft
choring energy of the surface and surface morphology
fects.
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