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Fast Q-tensor method for modeling the dynamics of defects in a liquid crystal director field
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A fast Q-tensor method, which can model the defect dynamics in a liquid crystal director field, is presented.
Conceptually based on the Oseen-Frank approach, we have added temperature energy density terms in addition
to the strain energy terms, and an improved normalization method for fast calculations. The method is more
compact and allows a larger time step than previous methods. The method is used to model the defect
dynamics occurring during the topological state change from a splay to bend director field configuration.
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[. INTRODUCTION Q-tensor method, two elastic constants are yielded if we use
the second-orde®-tensor expansion. However, it has been
Liquid crystals(LCs) have been used widely for applica- proved that degeneracy between splay and bend elastic con-
tions including display devices and optical components foistants can be removed if we use the third-order expansion
communication. In particular, recent display devices havd4]. Berreman has shown the relation between the Oseen-
been required to have better electro-optical characteristicgrank elastic terms and the second- and third-order terms of
such as the wide viewing angle and video rate imagesthe Q tensor[5]. In spite of these merits, the usu@itensor
Therefore, an understanding of the dynamic behavior of th&ethod is a complicated numerical process and requires a
LC director field has become important for the advanced Lovery small time step to prevent the divergence of the calcu-
device modes such as thecell [1], the multidomain cell, lated results.
and the PVA(patterned vertically alignedtell [2], which can In a previous reporft6], the defects in ar cell were mod-
improve the electro-optical characteristics compared witeled by using the Dickman®-tensor method. Dickman had
conventional defect-free twisted-nemafitN) cell. Different ~ shown that the Oseen-Frank vector representation could go
from the conventional TN cell, however, these types of LCdirectly to the Q-tensor representation if we use only one
modes may exhibit disclinations. In general, defects occur tghird-orderQ componen{7]. However, Dickman considered
allow for the transition between topologically inequivalent only a constant value of the order paramegeso that the
director configurations. One-dimensional calculations cannotesults are only qualitative in their description of defects.
give us appropriate results for modeling of the LC configu-Previously, we have shown the fagttensor method, which
rations containing defects. So, two- and three-dimensionatan calculate the order parameter, by adding the temperature
calculations for liquid crystal cells are important for under-terms in addition to th®-tensor representation of the Oseen-
standing the dynamics of an LC director field with defects. Frank free energy term8]. And we have derived an im-
In order to achieve the LC configurations in the equilib- proved normalization method for the faster calculations.
rium state, we need to calculate the minimum free energy. In this paper, we model dynamical behaviors of the LC
For the calculation of the free energy, we use the Gibb's fredlirector field with defects in a patterned-electratleell. The
energy of the LC cell that is composed of elastic constantgr cell is a fast response LC device that exhibits a wide view-
and electric field terms. ing angle, so that it has a good potential for TV applications.
The elastic energy can be expressed with Oseen-Frarlitowever, issues with ther cell include a transition from a
vector representation that uses three elastic constapitsy, ~ Splay state at lower voltage to a bend state at higher voltage
twist, and bengl and the Landau—de Genned-repre- that involves the nucleation and motion of defects. In order
sentation methof3]. The Oseen-Frank vector representationto model the patterned cell, we first review the derivation
method is the more common method, but it cannot handl@f the Q-tensor method, then by using the fa@ttensor
defects that may happen in the LC cell because it assumégethod, we calculate the order parame$eas well as the
that the order paramet&is a constant. As a result, it also director components,, n,, andn,. We compare the LC
cannot handle transitions between topologically differentdirector configurations from the fag-tensor method with
states(for example, splay to bend transition in thecell).  experimental photographs.
The other method, the Landau—de Genfetensor repre-
sentation, can handle defects and topological transitions in
addition to the normal dynamic behavior of LC cells by com-
bining the thermal and strain free energy. It implies that we
can achieve the information of the order param&én ad- As we mentioned above, the Gibb’s free energy density
dition to LC director components,, n,, andn,. In the  (fg) consists of elastic energy density term of the LC direc-
tor (fs) and external electric free energy density terfg) (
Simply, we can achieve the total energy by integrating the
*Corresponding author. Electronic address: pbos@kent.edu  calculated Gibb’s free energy density. Berreman has shown

II. NUMERICAL MODELING OF THE FAST
Q-TENSOR METHOD
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that the Landau—de Genn€Xrepresentation for the strain By using Eqs(3) and(4), we can calculate the LC director
energy density could be expressed as foll¢@is field from the Q tensor. In spite of this merit, this method
cannot model the dynamic LC configuration including de-
4 4 fects because it assumes a constant order para®état is
fs=2> C;PGP+| > C;G,¥+G,G, |+, equal to the value o8 at the temperature where the elastic
=t =1 ;)  constants were measured.
@ In order to calculate order parametat each grid point,

where the constan{" are related to elastic constants and W€ nee? é‘? ac:d 5f1. tﬁjmdpetrat:}fe ednirgy t% m thaft, int.the ab-
(n) , - sence of director field distortion, determingss a function
G;" can be defined with the values Qftensor.

In another way, we can express elastic energy density o(?f temperature because th_e order paramtex related di-
the LC director in the vector form. The vector form of the rectly to temperature. Basically, we can formulate the ther-

] . . | energy density by using a simple polynomial expansion
Frank-Oseen strain free energy density can be expressed i%?terms of theQ tensor that is expressed as follofa:

below:
o= 3Kaa(V-)*+ 3Kzon- VX ) >+ 3Kag(nX VX N)* fi(T)=fot 3A(TIQ; Qji +3B(TIQy QuQu+ 3C(T)
—3 (Kt Ko V-[N(V-n)+nx(Vxn)] X(Q;;Qi)2+0(QY). (5)
—qoK2(n-VXn), v

The restriction to a uniaxial order parameter tensor may be
whereK;, K,,, andK 53 represent the splay, twist, and bend considered inappropriate in regions where the order param-
elastic constants, respectivel,, is related to surface an- eter is spatially varying. However, it is experimentally ob-

Choring energy and, in the case of Strong anchoring energ§erved tha.t the Size Of the reg|0n Where the Order parameter

state,K,,4 is not neededq is the chirality of the LC. is spatially varying is typically of the order of molecular
Dickman derived theQ-tensor form of the Frank-Oseen dimensions. The total free energy density is the sum of Egs.
strain free energy density: (3)—(5), so that Gibb’s free energy densityq) can be de-
scribed as the sum of these three energy densities.
1 G,? 1 In order to achieve the equilibrium state of the director
fs=1—2(K33— K11+ 3K5)) ?4‘ E(K“_ Koo c_onf|gurat|on, |t_|s typlcal to use the EuIer—Lagrange equa-
tion. The following is the Euler-Lagrange equation for the
G, 2 1 Gy 1 Gg'® electric potential and the director components under the Car-
— 3Ky = + §K24? + E(K33_ K11 = tesian coordinate system. By solving K6), potential distri-
bution and LC configurations are obtained, respectively,
+qoK Ga? 3
doKazmgz 3) 0= _[fG]ij=
(2) (2) ©
Gy :ij,|ij,|r G; :ij,ijI,Iv 0=—[fgly=V-D,
GY¥=QikQiik, G =eQimQjm. where
[CyeY .
Gg _Q]kQIm,JQIm,kv ifg d ( dfg ) d ( afg ) d < ifg )
where [felo, = dQj dx|dQjxx/ dx|dQjy/ dx\ Q)

ik dQjk
ij:S(njnk_ %) ij,|:a—|l ofg d

[felv="y " dx

ofc\  d[afe| d[dfe
W, ax\av,) " ax| v,

The Levi-Civitasymbol e is 1 when subscripts are in the
order ofxyz yzx or zxy, and is—1 if the subscript order is The 'EermS[fG]Qjk and[fg]y represent the functional de-
xzy, yxz, or zyx O otherwise. TheSjy is the Kronecker delta, rivatives with respect to th®;, and voltageV, respectively.

which is 1 ifj equalsk, and O otherwise. By using these equations, we can calculate the components
The electric free energy density for tiggtensor form is  of the 3x3 matrix Q and voltages in each grid. For the
derived directly fromf=D-E/2: calculation, therefore, we need to formulate functional de-
rivative equations that are described as follows:
Y Qjk
fe—_so 8V’j +A8V11V'k_ y
2 S [felo, =[felst[felvtifclr, (7
= 28¢+8u, As=c, 5, Vj:ﬂ_ 4) where[fgls, [felv, and[fQ]T are the strain, voltage, and
3 )| temperature terms, respectively,
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1 (K11— K22 K24 1
[fels=— AN 1—2K11+ ZK22+ 1—2K33 Qi+ —Sz—le,lk_ §2‘Qﬂ,|k+ @(K%— K10 (Qim,jQim,k— Qim, 1 Qjk,m

2
= QimQjk,mi— Qim,mQijk,1 — QimQjk,im) + §2q0K229jlQOKI :

[felv="—2€0DeV Vi,

-
[felr= A1+A2?)Q'Q+A3Q'Q'Q+A4Q'Q'Q'Q,
ni
9 [dQy
kA5 T )
|
In this equation we see an explicit dependenceSamd [Il. NORMALIZATION METHOD FOR TRACELESSNESS

also we know that there is an implicit dependenceSoim
both theK’s and theQ’s. At this point we will assume that
the caoifficents of the derivatives @ are temperature inde-
pendent. For example, in the first term we will assume tha
theK’s are proportional t&?, and therefore we set the value ) X " L
of the explicitly shownS to the value at which we assume & Unit vector. Typically, the condition of tracelessness is di-
the elastic constants were measur@d). A more accurate rectly imposed when numerically determining the equilib-

approach accounting for the temperature dependence of tlm vqlue of theQ tensor[5]._Therefore, normalizations for
K's (and the extent of the validity of this approximatjgs ~ €ach time step can be achieved by the equa@qr-(Q;i
given by Berremaris]. —T,/3). However, we have found serious problems with this

In this equationT is the temperaturel,; represents the method when an electric field is applied. Figure 1 shows the

nematic-isotropic transition temperature, and the constanf&iculated dynamic property of a TN unit cell at 25 °C using
from A, to A, represent the coefficients for the curve fitting a normalization method of tracelessness. If we apply no volt-

polynomial. Generally, polynomial coefficients may be de-29€, We can see that all &fj; components are saturated in
pendent on nematic material properties. In order to achieve
the value of the coefficients, we can try to $tas a func- (2)0 61 e e e e —_

The Landau—de Genne® tensor has zero tracd,
(2Q;;=0) and it implies that the LC director is a unit vector
gEnizzl). Therefore, we need to normalize the calculated
newQ tensor at every time step so that it is tracelessraisd

tion of temperaturd to experimental data. Here, the coeffi-
cients are adjusted so tha; is at 95°C, and s& as to be 0.4
0.6 at room temperature. As a result, the valuesAgf ) ¥
A,, As, andA, asA’=0.79 J/IC A, A2=0.784 J/C i, A2 B2l Q,,
=0.61 J/Cm, andAJ=1.474 J/C A, respectively, were de- =7 -—--Q
termined. £ ----Q
For the equilibrium state, th® tensor and voltages at <001 S 2z
each grid point should be recalculated in every time step - I
until they exhibit stable response. We can achieve this by 0.20 T om0 3050

using the dynamic equatiop(dQj,/dt) = —[fgloj, Where

v is rotational viscosity. To obtain an equilibrium state, we
applied relaxation method based on dynamic equation for
numerical calculation. As a result, the formulated relation
betweenQ tensor of next tim<13jk*7+l and that of current
time Q" is as follows:

—7+1 -7 At
Qijk =Qjk +7[fG]ij- (8
Using this equation, th@-tensor components can be up- 0 1000 Timéwoo 3000
dated at each time step, so that the final static value ofthe
tensor is the equilibrium state. The order paramétés re- FIG. 1. Calculated dynamic behaviors of diagonal components
lated toQ tensor in the equation b§?=1.5(Q-Q) and we  of Q tensor and order parametsrusing a normalization method
can get this simultaneously with tlig¢ components. based on tracelessness of aensor:(a) 0V, (b) 5 V.
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FIG. 2. Calculated dynamic behaviors of diagonal components FIG. 3. Calculated dynamic behaviors of diagonal components
of the Q tensor and order paramet®using a normalization method of the Q tensor and order paramet&r (a) at room temperature
based on unitization of the LC directqa) 0 V, (b) 5 V. (25°0), (b) atT,;.

the range from-0.2 to 0.4. However, in the case that voltage never pushQ,, to the nonphysical condition of being more
is applied, the values d@;; components deviate this range. negative than-S/3.
It implies that the LC director has no longer unitized length  Figure 2 shows the calculated dynamic property using im-
and it does not make sense physically. proved normalization method. Here, stable dynamic proper-

To see the cause of this condition, consider the case whet#s are shown even with voltage applied.
the director is at 45° in th&-z plane, and a high voltage is
applied along the direction. The voltage term in the update
equations will caus®),, to grow without bound. Only the
normalization condition restrain®,, because the value of
the trace will become larger than O at each time step. We Figure 3 shows the calculated relaxation of order param-
expect that the effect of the voltage should not affect thester S and the diagonal components @fat room tempera-
value of Q,, that should stay fixed at-S/3. [Recall the ture and near the isotropic-nematic transition temperature.
definition of theQ tensor:Q;; = S(n?— 1/3).] However, with  For this graph, it was assumed that the cell was rubbed in the
the above normalization it is clear th@t,, will be pushed to  plus and minusy direction and was Sum thick. As men-
be more negative thar S/3. This condition is nonphysical tioned above, polynomial coefficients;—A, have been ad-
and causes the calculation to become unstable. The only wgysted such thafl,; are around 95°C, so that we can see
to avoid very nonphysical situations is to take very smallorder parameteBand all diagonalize®@ components go to 0
update steps. at T,,; from a typical value of the room temperatu@s °C).

The physical basis for th@ tensor being traceless is the Figure 4 shows more precise temperature characteristics of
fact that the director is a unit vector, and we considered tha&n order paramete3 when we apply a voltage to the cell. It
it might be more appropriate to rely on the renormalizationcan be seen that by adjusting the coefficiaptto A,, which
of n directly. Writing n;=n;/(|n|), where |n|= (n>2(+ nf, gives the ratio of the coefficients of the temperature terms to
+n2)%5 in terms ofQ;; , using the definition of);; , we can  the other terms in the free energy equation, the effect of a
find an improved normalization conditionQ;;=(Q;; voltage on the phase transition temperature can be adjusted

—T,/3) [SI(T,+S)]. It can be seen tha®,,+Q,,+Q,, 10 meetan experimental result.
=0 so that the above condition causes @densor to be
:racgless. 'tl's t:;lso PdOted that Itthe;. ”de"g ”ct’r:ma;"zf‘;g’/”Tcond" V. MODELING FOR LC DYNAMICAL BEHAVIORS
:Log) is simply the old one multiplied by the facto®/(T, OF A PATTERNED 1 CELL

Returning to our example, where the director is at 45° in  As mentioned before, the cell has a good potential for
the x-z plane and a high voltage is applied along #direc-  device applications because of its properties of fast response
tion, it can be seen that the new normalization condition willand wide viewing angle. In general, the director configura-

IV. TEMPERATURE DEPENDENCY OF THE FAST
Q-TENSOR METHOD
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FIG. 4. The calculated dependence of the order paransater
temperaturel. The solid line represents results when no voltage is
applied, the dash-dotted line and the dotted line represent the cal-
culated results when we apply the 5 V. For the dotted lines, the
values ofA;—A, have been changed to 0.01 times the values used
for the other two curvesA?—AY).

tion of the 7 cell at 0 V is the splay state. As we apply a
voltage, the director configuration goes to the bend state
from the splay state. Since the derived optical switching is
between the bend states, it is always necessary to apply an
initial voltage to make the LC configuration transition from
the splay to the bend state. Defects will necessarily be asso-
ciated with the transition between the topologically inequiva-
lent splay and bend states. In addition, the patterned-
electrode cell applies a nonuniform electric field to the
director field, which will affect the nucleation of defects.
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Therefore, in order to improve the electro-optical character-
istics, it is very important to model director configurations
with defects in the patternest cell.

For the experimental observation, we prepared a two-
dimensional periodic patterned cell for the experiment.
Figure 5a) shows the geometry of the cell for the calcu-
lation. The LC material used here Z4.1-1565 whereK ;4 is
14.4 pN,K 5, is 6.9 pN,K33is 10.7 pN,g; is 10.7,¢, is 3.7,

Jo is 0, and the cell gap is 1am. Figures ®)—5(d) show
photographs of the cell. Here, crossed polarizers are used for
the observation. Figure(B) shows the photograph when
lower voltage that is less than the transition voltage is ap-
plied. The LC directors which are inside the electrode begin
to tilt toward thez direction, so that we can recognize the

() variation of the retardation of the cell. As we apply the

VA

B X %

higher voltage, a defe@is observed. Figure(b) shows the
generation of the defect in the cell. If we apply higher
voltage than Fig. &), we can observe the movement of the
defect to the edge of the electrode. The movement direction
is dependent on rubbing direction. Figurédbshows the
moved defect in the patternescell.

In considering to proceed with the calculations, we expect

FIG. 5. The geometry of ther cell and its microphotographs: from experimental observations that the spatial region where
(a) a simulated structurdp) at 2 V, (c) at 4 V, (d) at 6 V. the order parameter varies from its bulk value will be quite
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FIG. 8. Two-dimensional director calculations for the modeling
of the w cell: (a) at 2 V, (b) at 4 V, (c) at 6 V under the same
condition as Fig. 7. The director orientation is shown for half of the
(@) calculated grid points. The orientation of the cylinders gives the
e

local director orientation, while their length is proportional to the

order paramete8 (the directors all lie in the plane of the figyre

The solid lines represent equipotential lines. The electric field di-

rection is normal to the equipotential line. The oval@ highlights

the high elastic strain region where the pair of defects could nucle-

ate for the case of a low anchoring energy. The circle&jrhigh-

light the line disclinations after they separated and moved toward
FIG. 7. The calculated order parameSdn therrcell: (@) at 0V,  the cell surfaces. The circles {b) highlight the moved line discli-

(b) at 2 V, (c) at 4 V, (d) at 5 V, (e at 6 V. A;—A, nation to each edge of the electrodes.

=0.01(A9-AY) and the normal grid points were 5®0. Each line

represents equiline.

distortion energy has reached the point of causing the order
parameter to decrease from its bulk value. As a result, if we
small, possibly of the order of molecular dimensions. Thisconsider a 1Qum pixel size with a reasonable number of
means that for the real system to be modeled accurately, wgrid points, we will be unable to see variations in the value
will need to have grid points in the vicinity of a defect of the order parameter. Figure 6 demonstrates this point. In
spaced at approximate molecular dimensions. To be able this case we have considered a device that has a patterned
model a pixel that is 1Qum wide and in a cell that has a electrode and a pretilt angle of zero. With this geometry, if
10-um cell gap would require=1x 10° grid points if a uni-  we start with 0 V applied between the top and bottom elec-
form grid spacing is used. If a smaller number of grid pointstrodes, and increase it, we expect to see the formation of a
is used we expect that deformed regions of the director fieldeverse-tilt wall, followed by the formation of a pair of dis-
can “disappear” between grid poin{g] before the elastic clination lines (n==*3) as described by Bouligrar@®]. If
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we model 550 grid points, we cannot see a variation in cylinders is proportional to the amplitude 8f and the ori-

the order parameter like in Fig(l® if a 10-um cell is con-  entation of the cylinders gives the director orientation. From
sidered, but it is possible if the cell thickness is reduced tdhe figures, we can understand the generation of the defect
0.1 um [Fig. 6(c)], as in this case the grid point spacing is pair. If the anchoring energy was very low, the defect pair
reduced to be of the order of the molecular i@ region of  would be expected to form from the region of high elastic
distortion cannot “slip between grid points” and the local distortion in center of the cefthe outlined area in Fig.(8)].
elastic distortion energy increases to the point of causing &fter nucleation, the movement of the pair of defects toward
lowering in the order paramejelFigure &c) shows that with  opposite surfaces will lower the elastic energy of the cell.
the values ofA;—A, equal toAY—AjS, the spatial size of the However if the anchoring energy is higas in this case the
region of variation in the value of the order parameter isdefects appear to nucleate directly on the surfaces. After the
what was expected. However, if we consider the cell thick-defects have formed on the electrodes, it is clear that the
ness of our experimental cell, we are not able to considefmovement in opposite directions along their respective sur-
grid points spaced as tightly as in Figich Therefore we faces further lowers the elastic energy contained in the cell.
will reduce the values oh;—A, to be 0.01, the values found This process is consistent with the experiments and shows
for A—AJ. In this case the defect nucleation and motion argthe dynamical behaviors in the cell.

expected to be similar to those which would be observed, but

the region of defect size will be much largé factor of VI. CONCLUSIONS
~100) than could actually occur. . _ .
Figure 7 shows the change of the order param@tarthe The dynamical behavior of the patternedtell by using a

patternedsr cell of Fig. 5 as the applied voltage is changed.fast Q-tensor method has been discussed. It allows us to
We assumed hard anchoring energy at the surface of the ceinderstand the generation of the defects in the cell as well as
so that the order parametSrat the surface is always higher normal LC dynamical properties. We showed that a nonuni-
than in the bulk of the cell. Figure(d) shows the variation form potential distribution caused a reverse-tilt wall over a
of the order paramete® at 2 V. On the center of the elec- patterned electrode, so that a pair of defects formed and
trode, a wall is formed. In Fig.(€), we can confirm that a separated. The defects moved to lower energy state of the
pair of defects is generated on the surface of the electrodé€lectrode edge finally. The calculated results explain well the
The order paramete8 of those positions is reduced by experimental behavior including defects. We expect a further
around 0 and it implies that topologically inequivalent phaseincrease in accuracy of these results if we consider soft an-
transition between splay and bend begins at the center poighoring energy of the surface and surface morphology ef-
in the electrode. In terms of these phenomena, de Gennégcts.
predicted the transition of a reverse-tilt wall to a pair of
disclination lines. Higher voltage makes the pair of defect
move to the edge of the electrode like Figéd)7and 7e). ACKNOWLEDGMENTS
This movement is exactly coincident with the physical phe- This work was supported in part by Samsung Electronics
nomenon in Fig. &). and Korea Science and Engineering Foundatii®@SEBP.
Figure 8 shows the calculated director configuration of theThe authors would like to thank Dwight Berreman for help-
patterneds cell in Fig. 5. In this figure the length of the ful discussions concerning th@-tensor method.

[1] P. L. Bos and J. A. Rahman, SID '93 Digest 2{1%93. [6] H. Mori, E. C. Gartland, Jr., J. R. Kelly, and P. J. Bos, Jpn. J.
[2] K. H. Kim and J. H. Souk, Euro Displa99, 115 (1999. Appl. Phys., Part B8, 135(1999.
[3] P. G. de Gennes and J. ProBhe Physics of Liquid Crystals  [7] S. Dickman, J. Eschler, O. Cossalter, and D. A. Mlynski, SID
2nd ed.(Clarendon Press, Oxford, 1993 '93 Digest 638(1993.
[4] Schiele and S. Trimper, Phys. Status SolidlH, 267(1983. [8] G.-D. Lee, J. Anderson, and P. J. Bos, Appl. Phys. L&tt.
[5] D. W. Berreman and S. Meiboom, Phys. Rev.38, 1955 3951(2002.
(1984).

041715-7



